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Experiments — generated samples
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Figure 1: Generated samples from text prompts. We show 512x512 samples.




Background: Visual Generative Models

Latent Variable Modeling Learn from explicitly constrained distribution

* Variational Auto-Encoders (VAES)

x  Blurry results

X |nstability in training

* Diffusion Models (DMs)

xT ez — XT_1—>X1—>X0
X Time-consuming




Background: Visual Generative Models

Observed Variable Modeling Learn the distribution of discrete tokens

* Mask-based Generation MaskGIT. MUSE

* Auto-Regressive (AR) Generation  Taming transformer, DALLE, Parti-
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Background: “Next-token prediction” in visual generation

* AR generation has dominated the Text generation field (e.g. GPT)

* An AR model typically includes a image tokenizer, a transformer decoder
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* Probability of each token is predicted based on all previous tokens
* Then the new token is sampled via sampling strategy (e.g. top-p/top-k)
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Background: Image Tokenization

« VQ-GAN * RQ-VAE
) . : Total D codebooks, for each:
- T B RQ(z D) = (ky, .., kp) € [V]°
l : o
To =2 Tg=74-1— Q(rg—1)
E —Q — D E —RQ— D )
2=RQ(zD) = ) ()
0+ 00+ --- OO d=1

Codebook [V]

z=Ex)

zg =Q((2) = (arg min ||2ij — zk||)

ZKE[V]

RQ-VAE: Autoregressive Image Generation using Residual Quantization



Background: Auto-regressive image generation

Drawbacks

X |Image tokens requires bi-directional rather than casual correlation

x Structural degradation when simply flatten images to 1d sequences

X Time-consuming In inference



VAR: from “next-token prediction” to “next-scale prediction”

Quantize latent feature map f into T
discrete tokens (xq, x5, ... X1)

x¢ € [V]

T
p(x1»x2; xk) = Hp(xt | X1, X2, "'!xt—l)
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X Time-consuming, Structural degradation-

Quantize latent feature map f into K
multi-scale token maps (ry, 13, ... k)

Ty = [V] hpXwg

P(Tprz; "'rk) - np(rk | Ty, 12, ---;rk—1)
k=1

v Efficient sampling, Bi-directional
correlation, Better scalability--



VAR: Multiscale Image quantizer

Algorithm 1: Multi-scale VQVAE Encoding Algorithm 2: Multi-scale VQVAE Reconstruction

N7

-

Inputs: multi-scale token maps R;

o

Inputs: raw image im;

g 2 Hyperparameters: steps K, resolutions 2 Hyperparameters: steps K, resolutions
(hie, Wi )=1; (ho, wi )iz
V=4096 E 3 = g(zm), R = []’ 3 f=o0;
s fork=1,--- , K do 4 fork=1,--- ,Kdo
\\ \ 5 rr = Q(interpolate(f, hr,wk)); 5 rr = queue_pop(R);
Q 6 R = queue_push(R, rx); 6 z. = lookup(Z, 7+); |
1x1 2 +—— f 7 | 21 = lookup(Z,1); 7 | 2k = interpolate(zk, hx, wk);
+ hyg Xwg 8 2z, = interpolate(zx, hix , Wk ); 8 | f= fA—l— ok (2k);
o | f=F—dnlz); s im = D(f);
2X2  Zy f-up(zy) 10 Return: multi-scale tokens R; 10 Return: reconstructed image im;
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VAR: Auto-regressive sa mp“ng Generate tokens in same scale at a time

(I5] means a start token with condition information)
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Limitations:  Rely heavily on the condition token [s]
Large attention map (hard to train, especially under high-resolution)
Possibly unstable for sampling, hard to generate complex scenes:



VAR: Positional encodings:

Positional encoding in VAR includes three parts:
* Pos_start: for [s], length = 1
* Level emb: for each scale, length = K

* Pos 1LC: for each tokens at each scale, length = Y.X_ hyxwy,

[s] rl r2 r3
Pos_start:
Level_emb: x1 X4 X9
Pos_1LC:

Limitations:  Unefficiency, duplicated, hard to adapt to new resolutions



VAR: Intrinsic Issues

Restricted Supervision

Condition limited in one token [s], thus restricted to fixed categories (close set)

How to generate under text prompts? (open set, generalizable)

Inefficiency in Spatial Modeling

learnable absolute positional encodings (APEs) for each token at each scale
* Extra parameters for training & difficult to learn, inefficiency

* Unable to leverage progressive training for high-resolution generation



Ours: Scale-wise T2l Gen. via AR Models
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(a) Framework of STAR (b) Transformer architecture

Pre-trained text encoder for handling textual information
* Cross-Attention provides detailed textual guidance

Normalized RoPE marks position without extra parameters



STAR: Textual guidance

Pooled text feature for start token [s]
* Provides diverse and generalizable textual descriptions

* Provides global semantic information

Additional cross-attention:

* More detailed textual guidance for each scale (layout, multi-object:)



STAR: Problems in existing positional encodings:

Learnable absolute positional encodings (APES)
* Only applicable under fixed image size

* Require extra parameters for training

Sinusoidal positional encodings

* Confusions when applied to different scales

(Significantly different encodings in tokens at different scales, while they actually
represents the same position in an image)
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Ours - Normalized RoPE
Latent 16X16

For k-th token maps of size  hy X wy M.

With position i €{1,2,...,ht},j €{1,2,..., Wi} R TR
Latent 24%x24
Normalized positional encoding PE(i,j) is calculated as: N
o .
. L J o0 A
PE(i,j) = RoPE (— : H) @ RoPE (— : W) 0 : O
hk Wi

Latent 32X32
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Progressive training

In STAR, only Level_emb is correlated to different scales

So progressive training Is enabled for high-resolution generation with low training cost

Trained model
under 256x Add new scales for Finetune for
512x generation  several iterations

Repeat process for
1024x generation



Quantitative Comparisons MJHQ FID

food fashion Stable Diffusion XL
MJHQ-30k benchmark: ), —K Eiﬁéi'fund s
indoor ‘ art U™
Methods FID | CLIP 1 1\ ¢
 Stable Diffusion 2.1 26.96 0.259 e
Stable Diffusion XL 11.42 0.291
Playground v2.5 657 0.283 |
PixArt-a 6.64 0.284 o —y
ous 473 0201
High Efficiency
ImageReward v1.0 benchmark: Infer-Time vs. Clip-Score
Methods IR 1T CLIP 1 °#®1  Ours
" Stable Diffusion 2.1 0.246 0.268 | S DRwsien
0.28 PixArt-a
Stable Diffusion XL 0.416 0282 ;
Playground v2.5 0.693 0.277 Flayground v.5
PixArt-a 0.904 0.278 Stable Diffusion v2.1
ous 0866 0287




Qualitative Comparisons

Hyper-realistic photograph fuIIA color of a baby pot belly pig playing in a field of sunflowers,
mood is light and happy, sony a7 lll.



Experiments - qualitative comparisons

Playground v2.5
/I
1“;

a e -
Australian rainbow serpent festival during the night time closeup photo of cyberpunk
teen girl, photorealistic portrait lens 50mm professional lens.

Insanely Realistic, macro, forest floor, professional photography, award winning photo,
60mm photo stacking, grapes in full focus, bokeh in the background, nature background.




Ablation studies

Model size & resolutions:

Depth #Reso #Param CLIP1 FID |

16 256 274M 0.272 6.88

30 256 1.68B 0.286 5.19
30 512 1688 0291 473

Cross-attention & Normalized RoPE:

A little deer wearing
sunglasses, National
Geographic, Our Planet.

In the evening, two
guinea pigs were having
dinner outside a café in
Paris. In the background,
the Eiffel Tower can be
seen.

A purple fox with fluffy
and shiny long fur is
sitting on an
unidentified flying
object, or UFQO, in the
forest.

Three astronauts are
sitting, by the river
carrying a big festive
cake.

w/o Cross-Attn.

w/o Normalized RoPE



Samples of generating 1024x images




Discussion - Limitations

Image tokenizer - Unsatisfactory reconstruction of image details

ﬁ 1IN ﬁ N\ y} AN

Origin Image KL VAE (from SD) Multiscale VQ-VAE

Possibly can be solved via advanced quantization (e.g. LFQ, FSQ, MoVQ...)

Unstable sampling results - Deformation especially under multiple objects

Generate images with arbitrary aspect ratios



Related works - Other VAR related papers

ControlVAR: Exploring Controllable Visual Autoregressive Modeling

Testing
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(a) Joint modeling of control and ' (b) Teaching force control (generation) (c) Teaching force image (understanding)

Figure 4: Illustration of ControlVAR. We jointly model the control and image during training with
start tokens [CLS| and [TYP] to specify the semantics and control type. We conduct conditional
generation by teacher forcing the AR prediction during testing.

Arxiv: https://arxiv.org/abs/2406.09750
Repo: N/A
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Related works - Other VAR related papers

Efficient Autoregressive Audio Modeling via Next-Scale Prediction (AAR)

Waveform

(a) Multi-scale residual quantization for audio waveform

T 1P T3

0 00 o0 CooEoe
® 88 000 EOEEEE

[ AR via next-scale prediction

HjD}DEﬁjD 000000

‘ [ Up-sample, word and pos embedding }
T

il 00 000

Lt 2 3

CLAP _
Tokens

EEOOOEEE [
CILIEE Attention Mask

€

EEEEEOOOTE®E
[ [

(b) Next-scale autoregressive prediction

Figure 2: Our model involves two distinct training phases. Stage 1: Scale-level Audio Tokenizer (SAT) to encode an audio sample

into a series of K tokens scales, donated as R = (r1, 72, ...,

i ). Each scale encodes information in different frequencies of the

audio waveform. Stage 2: Acoustic AutoRegressive (AAR) modeling via next-scale prediction relies on the pre-trained SAT to
predict each scale-level token 7; by conditioning on all previously predicted scales r—; and a CLAP token (Wu et al. 2023) as the
start token. The CLAP token is derived from ground truth audio. During training, we use the standard cross-entropy loss and the
attention mask as figured above to ensure that each r; can only be attributed by r<; and the start token.

Arxiv: https://arxiv.org/pdf/2408.09027
Repo: https://github.com/giuk2/AAR
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Related works - Other VAR related papers

G3PT: Unleash the power of Autoregressive Modeling in 3D Generation via Cross-scale

Querying Transformer
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Figure 1: Overall pipeline for processing and generating unordered 3D data. (a) G3PT starts by encoding the input point cloud
into discrete scales of token maps, each representing different levels of detail. The proposed Cross-scale Querying Transformer
(CQT) utilizes a cross-attention layer with varying numbers of queries to globally connect tokens across different scales, with-
out requiring the tokens to be in a specific order. The final output is the SDF value for each query point. (b) CQT enables
3D generation from coarse to fine scales under various conditions. An autoregressive transformer is trained using next-scale
prediction.

Arxiv: https://arxiv.org/pdf/2409.06322 Repo: N/A
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Related works — A summary of recent discrete token based
Generative Works

The “Next Scale Prediction” scheme can also do Unified Understand & Generation!

Methods Type Task Arxiv

LlamaGen i AR i C2I, T2l i https://arxiv.org/abs/2406.06525
TiTok i Mask i C2I i https://arxiv.org/pdf/2406.07550
MARS AR T2I, Multilingual Generation | hitps//andv.ora/ntml/2407.07614v1
Lumina-mGPT AR Unified Understand & Gen https://www.arxiv.org/abs/2408.02657
Show-o AR+Diff | Unified Understand & Gen - https://anxiv.org/pdt/2408.12528
Transfusion AR+Diff Unified Understand & Gen https://www.arxiv.org/abs/2408.11039

Open-MagViTv2 | AR  C2l

https://arxiv.org/html|/2409.04410
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